Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tropical peatlands are highly vulnerable to anthropogenic alterations. In Costa Rica, riverine peatlands are understudied, and most are not included in protected areas. This study aims to generating information useful to assess the anthropogenic pressure in a riverine peatland in Los Robles Sector (LRS) of Medio Queso Wetland (MQW) complex. Evaluations of impacts of fires on vegetation and surface peat chemistry, and the post-2021 fire, makeup of dominant vegetation changes with the Cyperaceae species Scleria melaleuca replacing Eleocharis interstincta as the dominant species are presented. The topsoil (0–20 cm) total C content was quantified as lower than 300 g kg−1 with no significant statistical differences in total C and N content between soil shortly after the fires or two years later. The species E. interstincta is observed to promote higher C stability during the dry season, and has a more recalcitrant composition of the root system compared to the post 2021-fire dominant S. melaleuca. To reduce the impact on C accumulation, measures to prevent grazing-originated fires, especially when the water table is low, are urgent. Hence, this work aims at proving information that can be a baseline for impacts assessment and to inform conservation measures and policies.more » « less
-
Abstract Quantitative estimations of ecohydrological water partitioning into evaporation and transpiration remains mostly based on plot‐scale investigations that use well‐instrumented, small‐scale experimental catchments in temperate regions. Here, we attempted to upscale and adapt the conceptual tracer‐aided ecohydrology model STARRtropics to simulate water partitioning, tracer, and storage dynamics over daily time steps and a 1‐km grid larger‐scale (2565 km2) in a sparsely instrumented tropical catchment in Costa Rica. The model was driven by bias‐corrected regional climate model outputs and was simultaneously calibrated against daily discharge observations from 2 to 30 years at four discharge gauging stations and a 1‐year, monthly streamwater isotope record of 46 streams. The overall model performance for the best discharge simulations ranged in KGE values from 0.4 to 0.6 and correlation coefficients for streamflow isotopes from 0.3 to 0.45. More importantly, independent model‐derived transpiration estimates, point‐scale residence time estimates, and measured groundwater isotopes showed reasonable model performance and simulated spatial and temporal patterns pointing towards an overall model realism at the catchment scale over reduced performance in the headwaters. The simulated catchment system was dominated by low‐seasonality and high precipitation inputs and a marked topographical gradient. Climatic drivers overrode smaller, landcover‐dependent transpiration fluxes giving a seemingly homogeneous rainfall‐runoff dominance likely related to model input bias of rainfall isotopes, oversimplistic Potential Evapotranspiration (PET) estimates and averaged Leaf Area Index (LAI). Topographic influences resulted in more dynamic water and tracer fluxes in the headwaters that averaged further downstream at aggregated catchment scales. Modelled headwaters showed greater storage capacity by nearly an order of magnitude compared to the lowlands, which also favoured slightly longer residence times (>250 days) compared to superficially well‐connected groundwater contributing to shorter streamflow residence times (<150 days) in the lowlands. Our findings confirm that tracer‐aided ecohydrological modelling, even in the data‐scarce Tropics, can help gain a first, but crucial approximation of spatio‐temporal dynamics of how water is partitioned, stored and transported beyond the experimental catchment scale of only a few km2.more » « less
An official website of the United States government
